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Local characteristics such as the angle 8 between the beam boundary
and the zero equipotential or the angle at which the particles leave the
emitter, both for the case of space-charge-limited emission, have
been studied in {1, 2]. It is found that the particles start along the nor-
mal, while 6= 3r/8. The present communication deals with the rela~
tion between the curvatures of the emitting surface, the particle wa~
jectory, and a forming electrode at zero potential. The shape of the
latter is considered for planar and axially symmetric beams in the ab-
sence of a magnetic field. Previous results [3,4] are used for the solu-
tion of the equations for a regular beam, which is represented in the
form of 2 series in x', with emission occurring from the surface with
x'= xt= const.

We have to derive the equation for the path near the starting point
O with an accuracy sufficient to give correct values for the curvature
and the derivative of the curvature at that point. The method of [5] is
used for the analytic continuation of the potential given (with its nor-
mal derivative) on the wajectory taken as the beam boundary into the
charge-free region. The equation for the equipotential that is correct
near O allows us to establish the desired relation.

Let x'= xl(z, R). xt= xz(z, R) be an orthogonal coordinate system in
the (z,R) meridional plane having g;; as metric tensor, while xt= x(l,
defines the emitting surface, where the curent density J= J(x%) is as-
sumed to be given. Passing to the physical components vy, Vypofthe
velocity and to the arc lengths S and P of the curvilinear axes X and

x%, we have
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Here %1, %y and Ki, kp are the principal curvatures of the surfaces
x'= const, x* = const as calculated at x' = X5 they are therefore
functions of x7,

From (1), we find the differential equation of the trajectory
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whose solution is defined by the expression
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in which gy and by are the coefficients in the expansion of the elements
of the metric tensor with respect to (X1 - xo) it being understood that
the values at O are used for all quantities in (3). In the (z,R) plane we
introduce the local Cartesian coordinates X and Y linked to the emitting
surface, with X directed along the normal and Y directed along the
tangent at O:

X = (z—zg) cos ¥ + (R — Ry)sin Y,
cosV = Vignont/ds = Vgnds?/IR,
Y = —(z — zo) sin ¥ + (R — Ro) cos ¥,
sin® = Vguoel /IR = — Vgm 922/ 0z. 4)

Note that 9 is the angle between the normal to the emitter at O and
the axis of rotation z.

We now need expansions of the functions = x%, x% - xﬁ with
respect to X and Y. It is readily seen that
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From (5) we get the equation of the wajectory in the X,Y represen-
tation:
Y=aX!+0X% a=1Y1w(lnJ)y,
b = Yiso (4r1 — o) (InJ)p" + YT p'. (6)
The curvature of the trajectory at O is thus dependent only on J:
k=1 (InJ)p’

We put (6) in parametric form

X=X (9)=uy, Y=Y, (u)=aqu® L bud,

and construct a function that gives the image of the real axis in the
plane w=u + iv on the beam boundary in the plane of flow Z =X +
+iY:
Z=X+i¥ =w+i(av?+ buwd),
X = u—kuv 4 b (v® — 3u),
Y = v 4 Yoh, (u? — %) b (u® — 3u?). )
The following is the approximate Z —» w inverse image that coin-
cides with the exact one up to cubic terms:
w = & — 1fsik B — (k2 + ib) Z°
+ kXY + sk 2(BXYE— X?) + b (BXY — V3,
B=Y — 1k, (X2— YY)
+ Yak 2 (Y® —3X°Y) 4- b (3XYZ — X9), 8

u=X

Consider now the potential and its normal derivative on the tra-
jectory, Since we intend to calculate k, (curvature of the zero-po-
tential forming electrode at the origin) and k, (derivative of the pre-
vious), and since the main terms in the expansions of s, pa, u, and
v with respect to X and Y will be linear, it is sufficient to restrict
ourselves to the following representation of the zero equipotential in
the w plane:

{, B, 1 = const), ®)

and in the expressions for the potential and the normal derivative at
the boundary we substitute expressions that give terms of order u*/4
u'/3, and ul? in the complex potential W(u, v, w).

On the trajectory for s, and p, we have

v = au 4 Bu? + yud

1

So=u — 1

L 1o ey 14 zJu
;ﬁud+{ukl+ﬁ<ao3 ao") P

Po= (a — le) u? 4 [b A an; — < k1s + 5 mlclﬂ u?,  (10)



JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS 61

The potential in the space containing the charges is given by

2= () 1+ (3 5 5 T) 0

14 o 1 a? 2 ay
+[z§rs/ T W T Va

83 157 2
+ 595 (342 + %% + 750 e T g k2

+

1 Jp I 13 Jp? 4 I,
togh +45C’J +E§T‘EJ}S an

The formulas of {3] may be simplified somewhat by using the con-
ditions for the Euclidean nature of the space, as written in terms of the
principal curvatures of the coordinate surfaces. These conditions take
the following form for the axially symmetric case

Uy A Fyp = HE AR Hagt =y Ry,

kyp' = kg’ 4- g%y

Hop' — kg (g — ) =0, Ty’ — 2y by —k}=0. (12)

If the values at O are calculated in (3)—(8) and (10) for the curva-
ture and for the coefficients in the expansions of the elements of the
metric tensor, then all of these in (11) become functions of x2, Then

for the potential on the trajectory we have
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Note that V(u), as would be expected, is independent of the coor-
dinate system used in solving the beam equations and is determined only
by: 1) the geometry of the emitting surface; 2) the law of variation in
J on that surface (kg is expressed in terms of %3, %y and %y'p).

The following equation applies on the trajectory:
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Up to quadratic terms, ky = 24 + 6bu, and vy i® + vy = 2¢, by vir-
tue of the existence of the energy integral. Finally:
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The symbols A, B and C, D will be used in what follows for the co-
efficients in the braces in (13) and (14).

We now write the parametric equations for the trajectory in (z, R)
coordinates and introduce the additional symbols

z=1z,(u)=z,+ X (u)cos®—Y (u)sind,
Blu)y= —dze/du,
R=R,(u)=Ry+ X (u)sin®+Y, () cos,
a(u)=—dR,/du. (15)
A solution has been given [5] to Cauchy's problem in the axially
symmetric case, which was derived by wransition to the complex region,

in which the Laplace equation becomes hyperbolic, and Riemann's
method is used:
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Here K(0) and E(0) are complete elliptic integrals of the first and
second kinds, while Rer Zey V, F, 2, and B are abbreviations for
Re (U + i), ze(u + iE), V(u + i), F(u + ig), o(u + i), B(u + i),
respectively:
7 =2 [Re X, (w) — Im Y, (w)] cos & —
—[Im X, () + Re Y, (w)] sin®
R=Ro+4 [Im X, (w)+ Re¥,(w)]cos® -+
+ [Re X, () — Im Y, ()] sin® an
In considering the first term in (16), it must be borne in mind that
R corresponds to a point close to O, while terms linear in u and § are
to be retained in the coefficients of V and F in evaluating the inte-

gral. Here we use expansions {6] for the complete elliptic integrals for
small values of the argument
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We then get the following expression for the solution to Laplace's
equation near O :
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The following are the coefficients that define the explicit equation
for the zero equipotential in the w plane:
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To put the equation for ¢ = 0 in local Cartesian coordinates
Y =pX 4 vX* -+ AXe, 9
we use(18). The curvature ofthe zero-potential forming electrode and
k, are given by
kg=2v (L +u7h k=61 ) A — 27+,
p=0a, ve=1p(1 4ok, 48,
A=a(l £ o) kb —ot) + 208k, v

Omitting intermediate steps, we have
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Formulas (20) can be entirely recast in terms of the curvature of
the emitting surface if we note that
By=yp (s —nx)l, ReP=wbkd,  sind=—Ro.

We allow Rg to tend to infinity and put %1 = %, %p= ke = 0 in (20)

to get for the planar case that
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To conclude, we consider x! flows {7, 8], for which the equation
for the trajectory is pg= 0 or
Y =aX+bX8 o=k,
b=1ghs, k=R =s(nJ)y. 22)

These are allowed in a plane by coordinate systems having the met-
ric

gu=gn= Vg =-exp (ex! + 127 {e, T=const), (23)

while in three dimensions they are allowed by spherical coordinates. It
is clear [3] that vy = 0 if Ugy' = 0, and Uy/Up = constant. It is readily
seen that the second condition is obeyed for (23), while the first gives
the law of variation of J at x' = 0z

J= Joexp (— 3/72%),
The expressions for k @ 8re unaltered, From (23)
k, =25 ecosn /8 &/, vsinm/8. (24)

The minus sign applies when the Laplace region extends towards
increasing x%, while the plus sign applies in the converse case, For in-
stance, for a wedge~shaped beam (part of a cylindrical diode) and for
flow around circles we have

gu=gn=-exp(2zl), 21=InR, 22=1p,
e=2, 7v=0, J= coﬂst, k¢=4/5coér:/8,
gu=gm=exp (22, zl=1, 22=InR, =0,
T=2, J=JyRS, ke=TF1%;sinmn/g.

In view of (22), we have as follows for k;p in spherical coordinates
and in systems (23):
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I am indebted to Yu. E. Kuznetsov for proposing the topic and for a
discussion of the results,
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