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Local character is t ics  such as the angle  0 between the beam boundary 
and the zero equipotent ia l  or the angle  a t  which the par t ic les  leave  the 

emi t t e r ,  both for the case of space - cha rge - l im i t ed  emission, have  
been studied in [1, 2]. I t  is found tha t  the par t ic les  start a long the nor- 
mal ,  while  0=  3~r/8. The present communica t ion  deals  with the r e l a -  
t ion between the curvatures of the emi t t ing  surface, the par t ic le  t ra -  
jectory,  and a forming e lec t rode  at  zero potent ia l .  The shape of the 
lat ter  is considered for planar and ax ia l ly  symmet r ic  beams in the ab-  
sence of a magne t i c  f ield.  Previous results [3,4] are used for the solu- 
t ion of the equations for a regular  beam,  which is represented in the 
form of a series in x 1, with emission occurring from the s ~ f a c e  with 
X 1 = X~ = c o n s t .  

We have to der ive the equat ion for the path near the starting point 
O with an accuracy sufficient  to g ive  correct  values  for the curvature 
and the der iva t ive  of the curvature at  that  point.  The method of [5] is 
used for the ana ly t i c  cont inuat ion of the poten t ia l  g iven (with i ts  nor- 

m a l  der iva t ive)  on the trajectory taken as the beam boundary into the 
charge- f ree  region. The equat ion for the equipotent ia l  that  is correct  
near O allows us to establish the desired re la t ion .  

Let x l =  xl(z,  R), x ~ = x2(z, R) be an orthogonal coordinate system in 
�9 1 1 the (z, R) mer id iona l  plane having gik as met r ic  tensor, whi le  x = x0 

defines the emi t t ing  surface, where the current density J = J(x 2) is as- 

sumed to be given.  Passing to the physical  components  Vxt, VxzOfthe 
ve loc i ty  and to the arc lengths S and P of the curvi l inear  axes x t and 
x 2, we have 

dS  vl [ 9J \% ~ 4 
a~-=- -~ - -~u  = k ~  - )  S / ' ( l + a S ) ,  a = T ~ T  , 

T = ~1 + x~ ,  "-d'i- = ~ = S % (A + OS), 

t Jp' 1 1 , 23 
A = -~  ~ -  - -  k l ,  0 = ~ Tp"  - -  - ~  k l S  - -  ~ U l k  1 - -  
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Here x t ,  xz  and kx, kz are the pr inc ipal  curvatures of the surfaces 
x ~ = const, x ~ = const as ca lcu la ted  at  x I = x~0; they are therefore 
functions of x ~. 

From (1), we find the d i f ferent ia l  equat ion of the t ra iectory 

gl, ~'/, dz~ t [ t 5)4, 
whose solution is defined by the expression 

aoA + ~g/~,~ ~• ~ 

1 t (~  __ _ ~ ) t  (xl __ xol)a ' + T • - -  ~ -  ( 3 )  

in which a k and b k are the coeff ic ients  in the expansion of the e lements  
of the met r ic  tensor with respect  to (x I -- x0~), i t  being understood that  
the values  at  O are used for a l l  quant i t ies  in (3). In the (z, R) plane we 
introduce the loca l  Cartesian coordinates X and Y l inked to the emi t t ing  
surface, with X directed along the normal  and Y directed along the 
tangent  a t  O: 

X = (z - -  zo) cos ~} + (R - -  Ro) sin ~, 

cose= ~ o ~ / o ~  = g - ~ 0 ~ / o n ,  

Y = - -  (z - -  Zo) sin t~ + (R - -  Ro) cos t%, 

s i n ~  = ] / ' ~ O x ' / O R  = - -  ]/"~v.O~:~ (4) 

Note that  # is the angle  between the normal  to the emi t te r  at  O and 
the axis of rotat ion z. 

We now need expansions of the functions x I -- x~, x z -- x~ with 
respect  to X and Y. It  is read i ly  seen tha t  

t a l  
so = a ; / '  (x 1 - -  Xo') = X + k l X Y  - -  "~ a ~  X2  - -  ~ -  Y" -t- 

+ [ ~  o.0 a, t k . l x ~ -  

Po = %% (z~ - -  z ? )  = Y + ~ I X Y  - -  

t boe" kl / 1 ., t - -T-gs-Tx"--Iy% +7,,ikl)x.+. (5) 

From (5) we ge t  the equat ion of the trajectory in the X ,u  represen- 

tat ion: 

Y = a X  ~ + b X  3, a = 1/i3 (In J)p ' ,  

b = lh50 (4• - -  so) On J)p" + 1]3oTp'. (6) 

The curvature of the t rajectory a t  O is thus dependent  only on J: 

kt = 1/~ (in Y)v' . 

We put (6) in parametr ic  form 

X = X e ( ~ O = u ,  Y = Y e ( u ) = a u ~ ' + b : L  s ,  

and construct a function that  gives the image  of the rea l  axis in the 
plane w = u + iv on the beam boundary in the p lane  of flow Z = X + 

+iY: 

Z =  X + i Y = w - } - i ( a w " + b w 3 ) ,  

X = u - -  k tuv + b (v ~ - -  3u"-v), 

Y = v + l h k  t ( i t  2 - -  v ~) 21- b ( u  3 - -  3 u p 2 ) ,  ( 7 )  

The following is the approximate  Z --~ w inverse image  that  co in-  
cides with the exac t  one up to cubic  terms: 

w = Z - -  ~/ziktZ"-" - -  (z/o.kt" + ib) Z 8 , 

u = X -1- k t X Y  + V.,_kt ~ ( 3 X Y "  - -  X a) -I- b (3X~ - -  y s ) ,  

v = Y - -  1/.,.k t ( X  "~ - -  Y"-) + 

+ 1/2kt". ( y s  __ 3X*"Y) + b ( 3 X Y  ~" - -  X s ) .  (8 I 

Consider now the poten t ia l  and its normal  de r iva t ive  on the t ra-  
jec tory .  S incewe  intend to ca l cu la t e  k r  (curvature of the zero-po-  
t en t i a l  forming e lec t rode  at  the origin) and k~o (der iva t ive  of the pre- 
vious), and since the main  terms in the expansions of so, P0, u, and 
v with respect  to X and Y wi l l  be l inear ,  i t  is sufficient  to res t r ic t  
ourselves to the following representat ion of the zero equipotent ia l  in 
the w plane:  

v = :zu + ~o~ .+ .ru s (c~, ~, "f = const),  (9) 

and in the expressions for the potent ia l  and the normal  de r iva t ive  at  
the boundary we substitute expressions that  g ive  terms of order u 4/a, 
u v/s,  and u l~ in the complex  po ten t i a l  W(u, v, w), 

On the t rajectory for so and P0 we have  

t al ~ l a k e +  t__{a,~ a.,. I k~2Ju~" 
"~~ = " - ~ ~ "~ + c, ~o~ - ~ )  - 

p 0 = ( ~ - k ~ ,  o ~,k~) l 



J O U R N A L  O F  A P P L I E D  M E C H A N I C S  AND T E C H N I C A L  P H Y S I C S  61 

The potential in the space containing the charges is given by 

f O J \ %  ~, ( [ t al ) 
2~ = t~-; ="l ~ + t ~  + ~ _  = + 

r14 ai t al ~ + 2  as + 
+ [ - ~  ~ T -- 2~- =0--~ ~ ~ 

83 157 2 
+ ~ (• + mD + 75-6- x~m -- ~ ~ + 

1 JP' 4 ap" t3 Jp  '2 4 Je"]  } 
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The formulas of [3] may be simplified somewhat by using the con- 
ditions for the Euclidean nature of the space, as written in terms of the 
principal curvatures of the coordinate surfaces. These conditions take 
the following form for the axially symmetric case 

xrs" + iqp" = • ~ + kr'-, • = • ~- ktl%, 

k~p" = kze @ Xl~4 e , 

X2p" --  k 2 (M 2 --- Xl) = B, k2s' - -  x 2 (k2 --  kl) = 0. (12) 

If the values at O are calculated in (3)-(8) and (10) for the curva- 
ture and for the coefficients in the expansions of the elements of the 
metric tensor, then all of these in (11) become functions of x *. Then 
for the potential on the trajectory we have 

t57 43 J, '' 4 Yp" 1_~_4 ..~] } 
@ 4~zz• @ 450 de 45 3 45 ku u ~ . (13) 

Note that V(u), as would be expected, is independent of the coor- 
dinate system used in solving the beam equations and is determined only 
by: 1) the geometry of the emitting surface; 2) the law of variation in 
I on that surface (k~ is expressed in terms of xi,  xz and ~r 

The following equation applies on the trajectory: 

k t (vx~ + vx, D = 0r 

Up to quadratic terms, k t = 2a + 6bu, and VxX z + Vxz z = 2~, by vir- 
tue of the existence of the energy integral. Finally: 

2 ~  ~ = o = F ( u ) =  

19J \% .I ( 2 Jp" 2 i Jp" 

The symbols A, B and C, O will be used in what follows for the co- 
efficients in the braces in (la) and (14). 

We now write the parametric equations for the trajectory in (z, R) 
coordinates and introduce the additional symbols 

z =  z (u)= z o + X e(u) c O s 6 -  Ye(u)sin6, 

B (u) = -- d% t du, 

B = B  ( u ) = B  o + X  e(u) s i n 6 + Y e ( u ) c o s ~ ,  

(u) = -- dI~ I du. (15) 

A solution has been given [5] to Cauchy's problem in the axially 
symmetric case, which was derived by transition to the complex region, 
in which the Laplace equation becomes hyperbolic, and Riemann's 
method is used: 

2~ (u, v) = R e W  (u, v, w) = lie Vtu, ) + 

2 y 
-~-~? } [2ReK (z) F + 2Be [K (<:)-- 

a ( z  - -  z) --  B (/~ - -  R) V] J 
--E(~)IV (/7 _~)~+(z --z)2 --BE(~) x 

} x [(R~ + R)= + (z  --  z)q'/' ' 

l-(n~ - R)~ + (=~ - =)~]'/-- 

Here K(o) and E(o) are complete elliptic integrals of the first and 
second kinds, while Re, Ze, V, F, c% and Bare abbreviations for 
R e ( u  + ig), Ze(U + ig), V(u + ig), F(u + ig), a(u + ig), B(u + ig), 
respectively: 

z = zo -}- [Be X e (iv) -- Im Ye (w~] cos ~ - -  

- -  [Im Xe (w) + Be Ye (w)] sin 

B = Ro + [Im X e (w) -t- Be Ye (w)] co.~ 0 + 

+ i r e  Xe (w) --  Im Ye (w)] sin 6 (17) 

In considering the first term in (16), it must be borne in mind that 
R corresponds to a point close to O, while terms linear in u and g are 
to be retained in the coefficients of V and F in evaluating the inte- 
gral. Here we use expansions [6] for the complete elliptic integrals for 
small values of the argument 

K (~) = V2 ~ (1 + V~ z~ + . . . ) ,  

/~ (z) = % a d --  V~ z= + . . . ) ,  

K (~) -- E (z)  = % a . % z ~  . 

We then get the following expression for the solution to Laplace's 

equation near O : 

sin 6 cos 6 
2 ~ ( u , v ) =  1- -  - '~o u - -  ,-Z'~o v -~- 

/3sin26 a s in6x  {3 s in~6-  acos6  h 
+ t  s - - ~ 7  + ~ - J - 0  ) =~ + ~ - ~ / = ~  + 

( 3 cos26 ~eos6 
+ + v~] (u~ + vD""• \ 8B~ 2Ro ] 

4 v I- sin 6 
• cos y are tg u + LA -4- 2R0 - -  

[ A s i n 6  , s in  ~-6"~ 
- t  2---~Z:-0 t 4--~;-)~ - 

( Acos6 sin 26~v]  ~ 7 v 
- -  v ~ cos y are \ 2/70 + ~ ]  (u~+ tg ~- 

.4 sin 6 a cos 6 

.~ ~I 10 v sin~6 ) (u~+v ~) "cos ~ - a r c t g  - -  @ 
8Ro~ u 

+ 3 i C  cos6 ( sin26 Csin6  + W -  ~ - ~  + -gg; - -0  ) ~ - 

7 ~ 3 (  A~o=6 ~=~n6 
+ v~") % sin ~ arc tg -~- -~- - - . D  + 2Ro - -  --R~o - + 

+ C sin 6 sin 26 ~ , ~ 10 v 
~-ff~--o - - ~ ] ( u + " + v ~ )  / s i n T a r c t g -  ? -  (18) 

The following are the coefficients that define the explicit equation 

for the zero equipotential in the w plane: 

3~ 3 
c ~ = t g ~ - ,  ~ = X ( i + ~ D ' t "  • 

s i n 6 ,  ~ 3 sin a'1-8-J X [__ ( A +  2_f~_0)cos_g__l_~.(G cos6 \  
+ - ~ o )  

2a~~ $ (6 
~; = t ~  + 2~o cos --8)-- 

7 8 [ (  s ln6k  . 4 (t  + a ~) ~ s in  A + ~-R-~-~ ) sin -$- - l -  

2Ro ] cos -~-] + 
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3 u ( A +  - ~ - o /  +8--R-~o ( i + ~ - )  sin t~ ~ cos (t~ - -  8 )  - -  

3 [ . Asin@ acos@ 
- 4 V - - ~ [ ' + ~  + e/to 

sin u @ 
F 2Ro t- Ro 

+ 
8/7o*" 

Csin@ . sin2@~] 2 a 
+ 2~o + 8-'ff~-o~/J + ~ ( i  + m ~) [2R0 

r 
To put the equation for ~o = 0 in local Cartesian coordinates 

y = ix x + vX 2 + ~,X 3 , (19) 

we use(18). The curvature of the zero-potential  forming electrode and 

k~ are given by 

k, = 2v (I + IX*") , k,~' = 6 [(l + ~2) X -- 2~v*'](l + pS)-'/', 

~L = ~X (l -}- ~ )  kt2 -t- b (1 - -  eta) + 2et~k t + T" 

Omitting intermediate steps, we have 

3 sin @ ~ 

9 
+ 3 5 - 7 - +  28 /re ] s i n ~ - '  

67 4 Jp" 
+ ~ ~i~2 -- -~- ~i 7 + 

2 9  Jp" 2 Jp" 2 Jp" 
+ l--fr0 Us j 15 k 2 - 7 -  + t5 J 

17 ~p + T-I- -}- 
- -q-65 j2 J / /to 

I O T 3 ~ ) c o s @  
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1 I 27 

~ (-~-- - -  6--% sin '  @ + -~-ff cos~ @ - -  

u t 
320 sin 

, 9 ( . _ r  
+ ~ o o  \ 2 0  J -~ ti2. Boo / c o s  

Formulas (20) can be entirely recast in terms of the curvature of 

the emitt ing surface if we note that 

k2 = U 2 p  (~.o - -  ~41) - 1 ,  B0-2 = • + k~, s i n  ~ '  = - -  X2 / t0  �9 

We allow R0 to tend to infinity and put ~i = x.  ~ =  k2= 0 in (20) 

to get for the planar case that 

4 g 16 J p '  . a 
k,~ = --"ff  U cos-g- -1- -g~ ~ - -  sin ~ -  , 

37 9 
k ~ ' = 6 c 0 s - ~ -  ---~p'--'~'-- 

4 Jp" 2 Jp" i 7  dp '~ ) 
�9 75 z - 7 - +  t5 J t05 J*- " (21) 

To conclude, we consider x 1 flows [% 8], for which the equation 

for the trajectory is P0 = 0 or 

Y = aX  ~" + b X  3, a = 1 /2kl ,  

b = 1 / 6 k l S ,  k t = k 1 = i/a (In J)p' .  (22) 

tic 
These are allowed in a plafle by coordinate systems having the met -  

g n  - -  gee = V ' }  = exp (sx 1 -t- "~z e) (e, "~ = const), (23) 

while in three dimensions they are allowed by spherical coordinates. It 
is clear [3] that v~ ~- 0 if U0{ = 0, and Uk/U 0 = constant. It is readily 
seen that the second condition is obeyed for (23), while the first gives 
the law of variation of I at x i = 0: 

J - -  Jo exp (--  ~/.~vx~). 

The expressions for k~ are unaltered. From (23) 

k =~ e c o s ~ / 8 ~ s / 7  T s i n ~ / 8 .  (24) 

The minus sign applies when the Laplace region extends towards 
increasing x $, while the plus sign applies in the converse case. For in- 
stance, for a wedge-shaped beam (part of a cylindrical diode) and for 
flow around cixcles we have 

gn = g~o = exp (2xl), z ~ = In / t ,  z~ = ~, 

e = 2 ,  "r J = c o n s t ,  k ~ = ~ / ~ c o s z c / 8 ,  

gn=g.o2=exp(2x~ x 1 = %  x ~-= lnR,  8 = 0 ,  

�9 v ~ 2, J 2"- JoB -~, k~=:: F I6/7 sin g/8 . 

In view of (22), we have as follows for k~ in spherical coordinates 
and in systems (2a): 

I 9 9 k "  = 6 cos y - -  -5"3" Tp '  - -  50" (~r + u22) -1- 

67 9 3"/ 

2 Jp" 2 Jp" t7 J p , 2  1 , 

15 k 2 - 7 - +  15 J 105 J~ 6 kiS -}- 

( 3 9 d p ' ~ s i n @  
+ ~Tff T + - 5 6 - ~ - ]  --~--0 + 

-{- T@ 140 J ] /to 

1 (__17 ~4sin._@ 27 Bd -- + ~- cos 2 t~ -- 

I 
320 

/t0 7 -  + lt--~ /t--7 " ' 

k v ' = 6 c o s 8 (  - 9 
2 

~ff u p ' - - ~ u  u2 + 

2 Jp"  17 Jp"" 1 
+ 15 J t05 j2 6 k l s ) "  

I am indebted to Yu. E. Kuznetsov for proposing the topic and for a 
discussion of the results. 
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